2D Nanomaterial—Based Electrocatalyst for Water Soluble Hydroperoxide Reduction

Author:

Pimpilova Mariya,Ivanova-Kolcheva Vanina,Stoyanova Maria,Dimcheva NinaORCID

Abstract

Hydroperoxides generated on lipid peroxidation are highly reactive compounds, tend to form free radicals, and their elevated levels indicate the deterioration of lipid samples. A good alternative to the classical methods for hydroperoxide monitoring are the electroanalytical methods (e.g., a catalytic electrode for their redox-transformation). For this purpose, a series of metal oxides—doped graphitic carbon nitride 2D nanomaterials—have been examined under mild conditions (pH = 7, room temperature) as catalysts for the electrochemical reduction of two water-soluble hydroperoxides: hydrogen peroxide and tert-butyl hydroperoxide. Composition of the electrode modifying phase has been optimized with respect to the catalyst load and binding polymer concentration. The resulting catalytic electrode has been characterized by impedance studies, cyclic voltammetry and chronoamperometry. Electrocatalytic effect of the Co-g-C3N4/Nafion modified electrode on the electrochemical reduction of both hydroperoxides has been proved by comparative studies. An optimal range of operating potentials from −0.215 V to −0.415 V (vs. RHE) was selected with the highest sensitivity achieved at −0.415 V (vs. RHE). At this operating potential, a linear dynamic range from 0.4 to 14 mM has been established by means of constant-potential chronoamperometry with a sensitivity, which is two orders of magnitude higher than that obtained with polymer-covered electrode.

Funder

Bulgarian Science Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference37 articles.

1. The Stability and Shelf Life of Fats and Oils;Talbot,2016

2. Main Methods and Approaches to the Determination of Markers of Oxidative Stress—Organic Peroxide Compounds and Hydrogen Peroxide

3. Dietary Carcinogens and Anti-Carcinogens

4. Oxidative Stress in Developmental Brain Disorders

5. Advances in instrumental methods to determine food quality deterioration;Kong,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3