High-Performance Ligand-Protected Metal Nanocluster Catalysts for CO2 Conversion through the Exposure of Undercoordinated Sites

Author:

Alfonso DominicORCID

Abstract

Previous experimental breakthroughs reveal the potential to create novel heterogeneous catalysts for the electroreduction of CO2 to a high-value product CO using ligand-protected Au-based nanoclusters. Since the chemical composition and geometric structures have been precisely defined, it is possible to adopt robust design guidelines for the development of practical catalysts and to fundamentally elucidate the underlying reaction mechanism. In this short review, the computational progress made to understand the experimentally observed reduction process on the following subset of materials—Au25(SR)18−, Au24Pd(SR)18, Au23(SR)16− and Au21Cd2(SR)16−—is described. A significant finding from our first-principles mechanistic studies is that CO2 conversion on the fully ligand protected nanoclusters is thermodynamically unfavorable due to the very weak binding of intermediates on the surface region. However, the reaction becomes feasible when either Au or S sites are exposed through the removal of a ligand. The results particularly point to the role of undercoordinated S sites in the creation of highly functional heterogeneous catalysts that are both active and selective for the CO2 conversion process. The incorporation of dopants could significantly influence the catalytic reactivity of the nanoclusters. As demonstrated in the case of the monopalladium substitution in Au25(SR)18−, the presence of the foreign atom leads to an enhancement of CO production selectivity due to the greater stabilization of the intermediates. With the Cd substitution doping of Au23(SR)16−, the improvement in performance is also attributed to the enhanced binding strength of the intermediates on the geometrically modified surface of the nanocluster.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3