Promotional Effect of Pt-Doping on the Catalytic Performance of Pt−CeO2 Catalyst for CO Oxidation

Author:

Jiang Angran,Ren ZhiboORCID,Qu YaqiORCID,Zhang Yanjun,Li Jianwei

Abstract

Growing interest in the development of a hydrogen economy means that CO oxidation is increasingly important for upgrading H2-rich fuel gas streams for fuel cells. CeO2-supported catalysts are the most promising candidates for the catalytic oxidation of CO because of their high activity. In the present work, DFT+U calculations were performed to investigate the stability and CO oxidation reactivity of Ptn (n = 1−4) clusters supported on CeO2(111) (Pt/CeO2) and Pt-doped CeO2(111) (Pt/(Pt−Ce)O2) surfaces. The Pt clusters showed similar nucleation behavior on both CeO2 and (Pt−Ce)O2 surfaces. Further, the formation of oxygen vacancies (Ov) was facilitated because of surface charge depletion caused by the dopant Pt. Our DFT results suggest that the interfacial OV plays an important role in the CO oxidation reaction cycle, and the calculated energy barrier for the CO oxidation reaction on the Pt/(Pt−Ce)O2 surface is approximately 0.43 eV lower than that on the surface of the undoped catalyst, suggesting enhanced CO oxidation reactivity. Therefore, the chemical modification of the CeO2 support via doping is an effective strategy for improving the catalytic performance of Pt/CeO2.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3