Magnetically Recoverable Biomass-Derived Carbon-Aerogel Supported ZnO (ZnO/MNC) Composites for the Photodegradation of Methylene Blue

Author:

Ngullie Renathung C.,Bhuvaneswari K.,Shanmugam Paramasivam,Boonyuen Supakorn,Smith Siwaporn MeejooORCID,Sathishkumar Munusamy

Abstract

Hydrothermally assisted magnetic ZnO/Carbon nanocomposites were prepared using the selective biowaste of pomelo orange. Initially, the carbon aerogel (CA) was prepared hydrothermally followed by a freeze-drying method. Furthermore, the iron oxide nanoparticles were deposited onto the surface of carbon using the co-precipitation method and we obtained magnetic carbon nanocomposite, i.e., Fe3O4/C (MNC). Moreover, the ZnO photocatalysts were incorporated onto the surface of MNC composites using a hydrothermal process, and we obtained ZnO/MNC composites. The ZnO/MNC (55%), ZnO/MNC (65%) and ZnO/MNC (75%) composites were prepared by a similar experimental method in order to change the weight ratio of ZnO NPs. Using a similar synthetic procedure, the standard ZnO and Fe3O4 nanoparticles were prepared without the addition of CA. The experimental results were derived from several analytical techniques, such as: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and diffuse reflectance spectroscopy (DRS-UV). The synthesized carbon, ZnO, Fe3O4, ZnO/MNC (55%), ZnO/MNC (65%) and ZnO/MNC (75%) composites were examined through the photocatalytic degradation of methylene blue (MB) under visible-light irradiation (VLI). The obtained results revealed that the composites were more active than carbon, ZnO and Fe3O4. In particular, the ZnO/MNC (75%) composites showed more activity than the rest of the composites. Furthermore, the recycling abilities of the prepared ZnO/MNC (75%) composites were examined through the degradation of MB under identical conditions and the activity remained constant up to the fifth cycle. The synthetic procedure and practical applications proposed here can be used in chemical industries, biomedical fields and energy applications.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3