2D Graphene Sheets as a Sensing Material for the Electroanalysis of Zileuton

Author:

Shanbhag Yogesh M.,Shanbhag Mahesh M.,Malode Shweta J.,Dhanalakshmi S.ORCID,Mondal KunalORCID,Shetti Nagaraj P.

Abstract

Zileuton (ZLT) is an active oral inhibitor of enzyme 5-lipoxygenase, and long-term intake and overdose of ZLT cause adverse effects, leading to critical conditions in patients. This is a well-recognized issue that necessitates a better approach for ZLT sensing. Given the increasing interest in ZLT sensing and the limitations of previous techniques, there is a need for a highly sensitive, robust, and fast operation method that is inexpensive and easy to use. Thus, for the sensitive detection and determination of ZLT, an electrochemical sensor based on graphene was fabricated. Graphene has excellent properties, such as high surface area, low toxicity, conductivity, and electroactive conjugation with biomolecules, making it suitable for sensing. The electrocatalytic property of graphene promotes the redox-coupled reaction of ZLT. Electrochemical investigation of the modifier was carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). An optimization and analysis of the influence of different parameters on the electrochemical behavior of ZLT were carried out using the CV approach. The scan rate study aided in exploring the physicochemical properties of the electrode process, and two electrons with two protons were found to be involved in the electrooxidation of ZLT. The fabricated sensor showed a wide range of linearity with ZLT, from 0.3 µM to 100.0 µM, and the detection limit was evaluated as 0.03 µM under optimized conditions. The analysis of spiked urine samples, with good recovery values for percent RSD, provided support for the efficiency and applicability of the developed electrode.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3