Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison

Author:

Scurti StefanoORCID,Allegri Alessandro,Liuzzi Francesca,Rodríguez-Aguado Elena,Cecilia Juan AntonioORCID,Albonetti StefaniaORCID,Caretti DanieleORCID,Dimitratos NikolaosORCID

Abstract

In this study, the temperature-dependent activity of Au/AC nanocatalysts in redox catalytic reactions was investigated. To this end, a series of colloidal gold catalysts supported on activated carbon and titania were prepared by the sol immobilization method employing polyvinyl alcohol as a polymeric stabilizer at different hydrolysis degrees. The as-synthesized materials were widely characterized by spectroscopic analysis (XPS, XRD, and ATR-IR) as well as TEM microscopy and DLS/ELS measurements. Furthermore, 5-hydroxymethylfurfural (HMF) oxidation and 4-nitrophenol (4-NP) reduction were chosen to investigate the catalytic activity as a model reaction for biomass valorization and wastewater remediation. In particular, by fitting the hydrolysis degree with the kinetic data, volcano plots were obtained for both reactions, in which the maximum of the curves was represented relative to hydrolysis intermediate values. However, a comparison of the catalytic performance of the sample Au/AC_PVA-99 (hydrolysis degree of the polymer is 99%) in the two reactions showed a different catalytic behavior, probably due to the detachment of polymer derived from the different reaction temperature chosen between the two reactions. For this reason, several tests were carried out to investigate deeper the observed catalytic trend, focusing on studying the effect of the reaction temperature as well as the effect of support (metal–support interaction) by immobilizing Au colloidal nanoparticles on commercial titania. The kinetic data, combined with the characterization carried out on the catalysts, confirmed that changing the reaction conditions, the PVA behavior on the surface of the catalysts, and, therefore, the reaction outcome, is modified.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3