Preparation of Highly Active Cu/SiO2 Catalysts for Furfural to 2-Methylfuran by Ammonia Evaporation Method

Author:

Fu Xinxin,Liu Yan,Liu Qiaoyun,Liu Zhongyi,Peng Zhikun

Abstract

Biomass plays an important role in the green manufacture of high value-added chemicals. Among them, the conversion of furfural (FFA) into 2-methylfuran (2-MF), catalyzed by a copper-chromium catalyst, is important in its industrial application. However, the use of chromium is limited due to its toxicity and pollution of the environment. In this paper, a Cu/SiO2 catalyst, prepared by the ammonia evaporation method, shows a better catalytic performance compared with that prepared by the co-precipitation method for the vapor-phase hydrodeoxygenation of FFA. The selectivity of 2-MF is higher than 80% with almost a complete conversion of FFA. Combined with the characterizations, the superiority of the ammonia evaporation method is attributed to the reduction of highly dispersed copper species and the increased Cu+/(Cu+ + Cu0) ratio due to the formation of a large content of copper phyllosilicate during the preparation. Moreover, Cu+ sites can act as a weak acid site, which improve the surface acidity of the catalyst and facilitate the formation of 2-MF. This new catalytic system provides a feasible and promising strategy for the industrial preparation of 2-MF from FFA, and effectively utilizes biomass resources to promote the development of biomass industry.

Funder

National Natural Science Foundation of China

Central Plains Science and Technology Innovation Leader Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3