Effect of UV Irradiation on the Structural Variation of Metal Oxide-Silica Nanocomposites for Enhanced Removal of Erythromycin at Neutral pH

Author:

Ghaffari YasamanORCID,Beak Soyoung,Bae Jiyeol,Saifuddin Md,Kim Kwang Soo

Abstract

In this study, the effect of UV treatment on the physicochemical properties and structural variation of metal oxide-silica nanocomposites (Mn2O3-Fe2O3@SiO2) has been investigated. Based on the results, UV irradiation significantly affects the nanocomposite structure, where SiO2 network reconfiguration, change in surface OH group density, and surface area were observed. Erythromycin (ERY) has been chosen as a module pollutant to compare the performance of the pristine and UV-treated nanocomposites. The pristine nanocomposite had a high adsorption efficiency (99.47%) and photocatalytic activity (99.57%) at neutral pH for ERY in the first cycle, and this efficiency decreased significantly for the multiple cycles. However, different results have been observed for the UV-treated nanocomposite, where it retained its performance for ten consecutive cycles. This enhanced performance is attributed to the structural modifications after UV exposure, where increased surface area, pore volume, and OH group density resulted in an increased number of the possible mechanisms responsible for the adsorption/oxidation of ERY. Moreover, oxidation of adsorbed molecules by UV light after each cycle can also be another reason for enhanced removal. For the first time, the fate of ERY is studied using regenerated nanocomposites after the last cycle. LC/MS/MS results showed that ERY degraded in 20 min, and the produced reaction by-products were adsorbed by nanocomposites. This study could be a foundation research for the practical approaches for the regeneration of nanomaterials and the successful removal of organic pollutants from aquatic environments.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3