Author:
Chen Pengzuo,Huang Weixia,Li Kaixun,Feng Dongmei,Tong Yun
Abstract
The development of highly active non-precious metal electrocatalysts is crucial for advancing the practical application of hydrogen evolution reaction (HER). Doping engineering is one of the important strategies to optimize the electrocatalytic activity of electrocatalysts. Herein, we put forward a simple strategy to optimize the catalytic activity of MoO3 material by incorporating the Cu atoms into the interlayer (denoted as Cu-MoO3). The prepared Cu-MoO3 nanosheet has a larger surface area, higher conductivity, and strong electron interactions, which contributes to optimal reaction kinetics of the HER process. As a result, the Cu-MoO3 nanosheet only needs a small overpotential of 106 mV to reach the geometric current density of 10 mA cm−2. In addition, it also delivers a low Tafel slope of 83 mV dec−1, as well as high stability and Faraday efficiency. Notably, when using the Cu-MoO3 as a cathode to construct the water electrolyzer, it only needs 1.55 V to reach the 10 mA cm−2, indicating its promising application in hydrogen generation. This work provides a novel type of design strategy for a highly active electrocatalyst for an energy conversion system.
Funder
the National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献