Physicochemical Features and NH3-SCR Catalytic Performance of Natural Zeolite Modified with Iron—The Effect of Fe Loading

Author:

Saramok MagdalenaORCID,Inger Marek,Antoniak-Jurak KatarzynaORCID,Szymaszek-Wawryca AgnieszkaORCID,Samojeden BogdanORCID,Motak MonikaORCID

Abstract

In modern dual-pressure nitric acid plants, the tail gas temperature usually exceeds 300 °C. The NH3-SCR catalyst used in this temperature range must be resistant to thermal deactivation, so commercial vanadium-based systems, such as V2O5-WO3 (MoO3)-TiO2, are most commonly used. However, selectivity of this material significantly decreases above 350 °C due to the increase in the rate of side reactions, such as oxidation of ammonia to NO and formation of N2O. Moreover, vanadium compounds are toxic for the environment. Thus, management of the used catalyst is complicated. One of the alternatives to commercial V2O5-TiO2 catalysts are natural zeolites. These materials are abundant in the environment and are thus relatively cheap and easily accessible. Therefore, the aim of the study was to design a novel iron-modified zeolite catalyst for the reduction of NOx emission from dual-pressure nitric acid plants via NH3-SCR. The aim of the study was to determine the influence of iron loading in the natural zeolite-supported catalyst on its catalytic performance in NOx conversion. The investigated support was firstly formed into pellets and then impregnated with various contents of Fe precursor. Physicochemical characteristics of the catalyst were determined by XRF, XRD, low-temperature N2 sorption, FT-IR, and UV–Vis. The catalytic performance of the catalyst formed into pellets was tested on a laboratory scale within the range of 250–450 °C using tail gases from a pilot nitric acid plant. The results of this study indicated that the presence of various iron species, including natural isolated Fe3+ and the introduced FexOy oligomers, contributed to efficient NOx reduction, especially in the high-temperature range, where the NOx conversion rate exceeded 90%.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3