Abstract
The photocatalytic efficiency of an innovative UV-light catalyst consisting of a mesoporous TiO2 coating on glass fibers was investigated for the degradation of pharmaceuticals (PhACs) in wastewater effluents. Photocatalytic activity of the synthesized material was tested, for the first time, on a secondary wastewater effluent spiked with nine PhACs and the results were compared with the photolysis used as a benchmark treatment. Replicate experiments were performed in a flow reactor equipped with a UV radiation source emitting at 254 nm. Interestingly, the novel photocatalyst led to the increase of the degradation of carbamazepine and trimethoprim (about 2.2 times faster than the photolysis). Several transformation products (TPs) resulting from both the spiked PhACs and the compounds naturally occurring in the secondary wastewater effluent were identified through UPLC-QTOF/MS/MS. Some of them, produced mainly from carbamazepine and trimethoprim, were still present at the end of the photolytic treatment, while they were completely or partially removed by the photocatalytic treatment.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献