Evaluation of ·OH Production Potential of Particulate Matter (PM2.5) Collected on TiO2-Supporting Quartz Filters

Author:

Sohara Koki,Yamauchi Katsuya,Sekine YoshikaORCID

Abstract

Oxidative stress induced by fine particulate matter 2.5 (PM2.5) is a potential cause of adverse health effects owing to the production of reactive oxygen species (ROS). Air filtration is a key technology for preventing exposure to particulate contaminations; however, particulate matter trapped by filters has the potential risk of human contact with condensed PM2.5. Thus, this study aims to reduce the hydroxyl radical (·OH) production potential of PM2.5 collected on such TiO2-supporting quartz filters. The ·OH production potential was evaluated for PM2.5, which was collected in Kanagawa, Japan, using a terephthalate assay coupled with flow injection analysis. Although the PM2.5 levels at the sampling site were not severe, the PM2.5 samples exhibited ·OH production potential, which was mostly attributed to organic aerosols. The effect was verified using a TiO2-supporting quartz filter for the collection and subsequent degradation of PM2.5. The ·OH production potential was significantly reduced from 0.58 ± 0.40 pmol/(min m3) to 0.22 ± 0.13 pmol/(min m3) through ultraviolet irradiation for 24 h. This suggests that the photocatalytic reaction of the TiO2 filter is effective in reducing the ·OH production potential of PM2.5.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3