The Role of Nickel and Brønsted Sites on Ethylene Oligomerization with Ni-H-Beta Catalysts

Author:

Seufitelli Gabriel V. S.ORCID,Park Jason J. W.,Tran Phuong N.,Dichiara AnthonyORCID,Resende Fernando L. P.,Gustafson Rick

Abstract

The present work studies the adsorption of ethylene on Ni-H-Beta particles to unravel the roles of nickel and Brønsted sites in the catalytic oligomerization of ethylene. Three models (i.e., two based on the Cossee–Arlman mechanism and one based on the metallacycle mechanism) are examined in terms of the nature of the active sites and the adsorption mechanism involved in the ethylene coordination step. The results are consistent with the participation of two active sites in the formation of [Ni(II)-H]+ Cossee–Arlman centers and also suggest that ethylene dissociates upon adsorption on [Ni(II)-H]+ sites. Further characterization of Ni-H-Beta catalysts prepared at different nickel loadings and silica-to-alumina ratios reveals that highly dispersed Ni2+ exists on the catalyst surface and interacts with the catalyst’s lattice oxygen and free NiO crystals. At the same time, the kinetic results indicate that Brønsted sites may form isolated nickel-hydride ([Ni(II)-H]+) centers on the catalyst surface. In addition, the presence of residual, noncoordinated Ni2+ and Brønsted sites (not involved in the formation of [Ni(II)-H]+ sites) shows a reduced probability of the formation of nickel-hydride sites, hindering the conversion rate of ethylene. A mechanism for forming [Ni(II)-H]+ centers is proposed, involving ethylene adsorption over Ni2+ and a Brønsted site. This research has important implications for improving ethylene oligomerization processes over nickel-based heterogeneous catalysts.

Funder

American Chemical Society: Petroleum Research Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3