Abstract
Global warming and rising waste content collectively accelerate the development of renewable-derived ‘low-carbon’ chemical technologies. Among all abundant renewables, marine-/food-waste-derived chitin, the only nitrogen-containing sustainable biomass, contains the unique N-acetylglucosamine units, which could be synthetically manipulated to a plethora of organonitrogen chemicals. Herein, we report the efficient one-step catalytic valorization of chitin to N-acylethanolamine over cost-effective Ni/CeO2-based materials, which interestingly demonstrate shape-based reactivity based on CeO2 supports. In general, all three catalysts (Ni on cubic-, rod-, and polyhedral-shaped CeO2 supports) were active for this reaction, but they differed in their catalytic efficiency and time-monitored reaction profiles. Herein, Ni on cubic-shaped CeO2 delivered relatively better and stable catalytic performance, along with its rod-shaped counterpart, while the polyhedral CeO2-based material also delivered decent performance. Such interesting catalytic behavior has been corroborated by their physicochemical properties, as revealed by their characterization studies. Herein, to establish an appropriate structure-property-reactivity relationship, multimodal characterization techniques and control mechanistic experiments have been performed. This work demonstrates a concept to reduce the consumption of primary carbon resources and increase the utilization of secondary waste materials to facilitate a smooth transition from a linear economy (cf. cradle-to-grave model) to a circular economy (cf. cradle-to-cradle model).
Funder
National Natural Science Foundation of China
Wuhan University
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献