Photo–Redox Properties of –SO3H Functionalized Metal-Free g-C3N4 and Its Application in the Photooxidation of Sunset Yellow FCF and Photoreduction of Cr (VI)

Author:

Venkatesvaran Harikrishnan,Balu SridharanORCID,Chowdhury Anuradha,Chen Shih-Wen,Yang Thomas C.-K.ORCID

Abstract

In this work, we synthesized a metal-free sulfonic functionalized graphitic carbon nitride using sulfuric acid through the wet impregnation technique. The functionalization of sulfonic groups (–SO3H) on g-C3N4 will promote a high surface charge density and charge separation owing to its high electronegativity. The g-C3N4–SO3H shows excellent optical/electronic and surface properties towards enhanced photo–redox reactions. The sulfonic groups also facilitate the availability of more separated charge carriers for photocatalytic oxidation and reduction reactions. The as-synthesized material has been characterized by different spectroscopic tools to confirm the presence of functionalized –SO3H groups and optoelectronic possessions. The photocatalytic responses of g-C3N4–SO3H result in 99.56% photoreduction of Cr (VI) and 99.61% photooxidation of Sunset Yellow FCF within 16 min and 20 min, respectively, of visible light irradiation. The g-C3N4–SO3H catalyst exhibits a high apparent rate constant (Kapp) towards the degradation of Cr (VI), and SSY, i.e., 0.783 min−1 and 0.706 min−1, respectively. The intense optical–electrochemical properties and potentially involved active species have been analyzed through transient photocurrent, electrochemical impedance, and scavenging studies. Consequently, the photocatalytic performances are studied under different reaction parameters, and the plausible photocatalytic mechanism is discussed based on the results.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3