Effect of a Metallocene Catalyst Mixture on CNT Yield Using the FC-CVD Process

Author:

Chauhan DevikaORCID,Pujari AnupthaORCID,Zhang Guangqi,Dasgupta KinshukORCID,Shanov Vesselin N.,Schulz Mark J.

Abstract

This work studies synthesis of carbon nanotube (CNT) sheet using the high temperature (1400 °C) floating catalyst chemical vapor deposition (FC-CVD) method. Three metallocenes—ferrocene, nickelocene, cobaltocene—and their combinations are used as precursors for metal catalysts in the synthesis process. For the carbon source, an alcohol fuel, a combination of methanol and n-hexane (9:1), is used. First, the metallocenes were dissolved in the alcohol fuel. Then, the fuel mixture was injected into a tube furnace using an ultrasonic atomizer with Ar/H2 carrier gas in a ratio of about 12/1. The synthesis of CNTs from a combination of two or three metallocenes reduces the percentage of metal catalyst impurity in the CNT sheet. However, there is an increase in structural defects in the CNTs when using mixtures of two or three metallocenes as catalysts. Furthermore, the specific electrical conductivity of the CNT sheet was highest when using a mixture of ferrocene and cobaltocene as the catalyst. Overall, the multi-catalyst method described enables tailoring certain properties of the CNT sheet. However, the standard ferrocene catalyst seems most appropriate for large-scale manufacturing at the lowest cost.

Funder

National Institute for Occupational Safety and Health through the Pilot Research Project Training Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3