Preparation, Property Characterization of Gd2YSbO7/ZnBiNbO5 Heterojunction Photocatalyst for Photocatalytic Degradation of Benzotriazole under Visible Light Irradiation

Author:

Yao YeORCID,Luan JingfeiORCID

Abstract

The Gd2YSbO7/ZnBiNbO5 heterojunction photocatalyst was synthesized for the first time by the facile in situ precipitation method. The structural properties of a Gd2YSbO7/ZnBiNbO5 heterojunction photocatalyst were characterized by X-ray diffractometer, scanning electron microscope-X ray energy dispersive spectra, X-ray photoelectron spectrograph and UV-Vis diffuse reflectance spectrophotometer. The band gap energy (BGE) of Gd2YSbO7 or ZnBiNbO5 was found to be 2.396 eV or 2.696 eV, respectively. The photocatalytic property of Gd2YSbO7 or ZnBiNbO5 or Gd2YSbO7/ZnBiNbO5 heterojunction photocatalyst (GZHP) was reported. After a visible-light irradiation of 145 minutes (VLI-145 min), the removal rate (RER) of benzotriazole reached 99.05%, 82.45%, 78.23% or 47.30% with Gd2YSbO7/ZnBiNbO5 heterojunction (GZH), Gd2YSbO7, ZnBiNbO5 or N-doped TiO2 (NTO) as photocatalyst. In addition, the kinetic constant k, derived from the dynamic curve toward benzotriazole concentration and visible light irradiation time with GZH as a photocatalyst, reached 0.0213 min−1. Compared with Gd2YSbO7 or ZnBiNbO5 or NTO, GZHP showed maximal photocatalytic activity (PHA) for the photocatalytic degradation of benzotriazole under visible-light irradiation. The RER of total organic carbon during the photocatalytic degradation of benzotriazole reached 90.18%, 74.35%, 70.73% or 42.15% with GZH as a photocatalyst or with Gd2YSbO7, ZnBiNbO5 or NTO as a photocatalyst after VLI-145 min. Moreover, the kinetic constant k, which came from the dynamic curve toward total organic carbon concentration and visible light irradiation time with GZH as a photocatalyst, reached 0.0110 min−1. Based on above results, GZHP showed the maximal mineralization percentage ratio when GZHP degraded benzotriazole. The results showed that hydroxyl radicals was the main oxidation radical during the degradation of benzotriazole. The photocatalytic degradation of benzotriazole with GZH as a photocatalyst conformed to the first-order reaction kinetics. Our research aimed to improve the photocatalytic properties of the single photocatalyst.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3