Abstract
Semiconductor materials are the basis of electronic devices employed in the communication and media industry. In the present work, we report the synthesis and characterization of mixed metal oxides (MOs) as p,n-junction photocatalysts, and demonstrate the correlation between the preparation technique and the properties of the materials. Solid-state UV-visible diffuse reflectance spectroscopy (UV-VIS DRS) allowed for the determination of the light absorption properties and the optical energy gap. X-ray photoelectron spectroscopy (XPS) allowed for the determination of the surface speciation and composition and for the determination of the valence band edge. The opto-electronic behavior was evaluated measuring the photocurrent generated after absorption of chopped visible light in a 3-electrode cell. Scanning electron microscopy (SEM) measurements allowed for auxiliary characterization of size and morphology, showing the formation of composites for the ternary Cu2O-In2O3 p,n-mixed oxide, and even more for the quaternary Cu2O-In2O3-TiO2 MO. Light absorption spectra and photocurrent-time curves mainly depend upon the composition of MOs, while the optical energy gap and defective absorption tail are closely related to the preparation methodology, time and thermal treatment. Qualitative electronic band structures of semiconductors are also presented.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献