Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation

Author:

Ferreira Maria Eliana Camargo,Soletti Lara de Souza,Bernardino Eduarda Gameleira,Quesada Heloise Beatriz,Gasparotto Francielli,Bergamasco Rosângela,Yamaguchi Natália UedaORCID

Abstract

The present research aimed to evaluate the photocatalytic activity of reduced graphene oxide and manganese ferrite nanocomposite supported on eucalyptus wood ash waste (WA) from industrial boilers, for the decolorization of methylene blue (MB) solutions, using sunlight as an irradiation source. For this, the photocatalyst named MnFe2O4-G@WA was synthesized by a solvothermal method and characterized by analyzes of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller and zeta potential. Firstly, the photocatalyst was evaluated for photocatalytic decolorization of MB under different reaction conditions. Then, the influence of pH, photocatalyst dose and H2O2 was evaluated. MnFe2O4-G@WA showed 94% of efficiency for photocatalytic decolorization of MB under operating conditions of solar irradiation, 0.25 g/L of catalyst, 300 mg/L of H2O2. The proposed degradation reaction mechanism suggested that the photodegradation of MB was through a synergistic mechanism of photocatalysis and photo-Fenton reactions, with the combined action of the three materials used. The data adjusted to the first order kinetics from the Langmuir–Hinshelwood model. In addition, MnFe2O4-G@WA showed high stability, maintaining its efficiency above 90% after 5 cycles. The results indicated that the nanophotocatalyst is a potential technology for the decolorization of MB solutions.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3