Soot Oxidation in a Plasma-Catalytic Reactor: A Case Study of Zeolite-Supported Vanadium Catalysts

Author:

Zhu Xinbo,Wu Hanpeng,Luo Jianbin,Liu Jin,Yan Jiahao,Zhou Zijian,Yang Zhengda,Jiang Ye,Chen Geng,Yang Guohua

Abstract

The plasma-catalytic oxidation of soot was studied over zeolite-supported vanadium catalysts, while four types of zeolites (MCM-41, mordenite, USY and 5A) were used as catalyst supports. The soot oxidation rate followed the order of V/MCM-41 > V/mordenite > V/USY > V/5A, while 100% soot oxidation was achieved at 54th min of reaction over V/MCM-41 and V/mordenite. The CO2 selectivity of the process follows the opposite order of oxidation rate over the V/M catalyst. A wide range of catalyst characterizations including N2 adsorption–desorption, XRD, XPS, H2-TPR and O2-TPD were performed to obtain insights regarding the reaction mechanisms of soot oxidation in plasma-catalytic systems. The redox properties were recognized to be crucial for the soot oxidation process. The effects of discharge power, gas flow rate and reaction temperature on soot oxidation were also investigated. The results showed that higher discharge power, higher gas flow rate and lower reaction temperature were beneficial for soot oxidation rate. However, these factors would impose a negative effect on CO2 selectivity. The proposed “plasma-catalysis” method possessed the unique advantages of quick response, mild operation conditions and system compactness. The method could be potentially applied for the regeneration of diesel particulate filters (DPF) at low temperatures and contribute to the the emission control of diesel engines.

Funder

National Natural Science Foundation of China

Qingdao science and technology demonstration and guidance project for benefiting the people

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3