Electrochemical Degradation of Nitrobenzene Wastewater: From Laboratory Experiments to Pilot-Scale Industrial Application

Author:

Liu DunyiORCID,Liao Zhangjiu,Hu Ziyi,Shang Enxiang

Abstract

In this study, the electrochemical degradation of nitrobenzene (NB) was conducted on the Ti/SnO2-Sb/Ce-PbO2 anode with excellent functional performance. The effect of applied current density, electrode distance, pH value and initial concentration on the reaction kinetics of NB was systematically studied. The total organic carbon (TOC) removal rate reached 91.5% after 60 min of electrolysis under optimal conditions. Eight aromatic intermediate products of NB were identified by using a gas chromatography coupled with a mass spectrometer, and two aliphatic carboxylic acids were qualitatively analyzed using a high-performance liquid chromatograph. The electrochemical mineralization mechanism of NB was proposed based on the detected intermediates and the identified key active oxygen specie. It was supposed that the hydroxyl radical produced on an anode attacked NB to form hydroxylated NB derivatives, followed by the benzene ring opening reactions with the formation of aliphatic carboxylic acids, which mineralized to CO2 and H2O. In addition, NB was reduced to less stable aniline on the cathode surface, which resulted in actualized mineralization. The successful pilot-scale industrial application in combination with wastewater containing NB with the influent concentration of 80–120 mg L−1 indicated that electrochemical oxidation has great potential to abate NB in practical wastewater treatment.

Funder

Natural Science Foundation of Hebei Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3