Substrate Specificity of an Aminopropyltransferase and the Biosynthesis Pathway of Polyamines in the Hyperthermophilic Crenarchaeon Pyrobaculum calidifontis

Author:

Fukuda Wakao,Osaki Mamoru,Yasuda Yusuke,Hidese Ryota,Higuchi TsunehikoORCID,Umezawa NaokiORCID,Fujiwara Shinsuke,Mizohata EiichiORCID

Abstract

The facultative anaerobic hyperthermophilic crenarchaeon Pyrobaculum calidifontis possesses norspermine (333), norspermidine (33), and spermidine (34) as intracellular polyamines (where the number in parentheses represents the number of methylene CH2 chain units between NH2, or NH). In this study, the polyamine biosynthesis pathway of P. calidifontis was predicted on the basis of the enzymatic properties and crystal structures of an aminopropyltransferase from P. calidifontis (Pc-SpeE). Pc-SpeE shared 75% amino acid identity with the thermospermine synthase from Pyrobaculum aerophilum, and recombinant Pc-SpeE could synthesize both thermospermine (334) and spermine (343) from spermidine and decarboxylated S-adenosyl methionine (dcSAM). Recombinant Pc-SpeE showed high enzymatic activity when aminopropylagmatine and norspermidine were used as substrates. By comparison, Pc-SpeE showed low affinity toward putrescine, and putrescine was not stably bound in its active site. Norspermidine was produced from thermospermine by oxidative degradation using a cell-free extract of P. calidifontis, whereas 1,3-diaminopropane (3) formation was not detected. These results suggest that thermospermine was mainly produced from arginine via agmatine, aminopropylagmatine, and spermidine. Norspermidine was produced from thermospermine by an unknown polyamine oxidase/dehydrogenase followed by norspermine formation by Pc-SpeE.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3