Author:
Kousar Tasneem,Bokhari Tanveer Hussain,Altaf Awais,Haq Atta ul,Muneer Majid,Farhat Lamia Ben,Alwadai Norah,Alfryyan Nada,Jilani Muhammad Idrees,Iqbal Munawar,Khan Muhammad I.,Khosa Muhammad Kaleem
Abstract
Advanced oxidation processes (AOPs) have emerged as a promising approach for the removal of organic dyes from effluents. Different AOPs were employed for the degradation of Reactive Yellow 160A (RY-160A) dye, i.e., SnO2/UV/H2O2 and TiO2/UV/H2O2. In the case of UV treatment, maximum degradation of 28% was observed, while UV/H2O2 furnished 77.78% degradation, and UV/H2O2/TiO2 degraded the RY-160A dye up to 90.40% (RY-160A 30 mg/L, 0.8 mL of H2O2). The dye degradation was 82.66% in the case of UV/H2O2/SnO2 at pH 3. FTIR and LC-MS analyses were performed in order to monitor the degradation by-products. The cytotoxicity and mutagenicity of RY-160A dye were evaluated by hemolytic and Ames (TA98 and TA100 strains) assays. It was observed that the RY-160A dye solution was toxic before treatment, and toxicity was reduced significantly after treatment. Results indicated that UV/H2O2/TiO2 is more efficient at degrading RY-160A versus other AOPs, which have potential application for the remediation of dyes in textile effluents.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献