Abstract
The development of efficient Pt-supported zeolite catalysts with tunable micro/mesopore structures for the removal of volatile organic compounds (VOCs) presents a major challenge. Herein, hierarchical Pt/Y zeolites with tunable mesopores are fabricated by varying the etching time before the surfactant-templated crystal rearrangement method and used as catalyst supports for VOC oxidation. The hierarchical Pt/Y zeolites provided an excellent environment for Pt nanoparticle loading with abundant accessible acidic sites. The catalytic performance of the obtained hierarchical Pt/Y zeolites is analyzed using toluene oxidation, with the modified zeolites exhibiting improved catalytic activities. The hierarchical Pt/Y zeolites exhibited higher catalytic toluene oxidation activities than non-hierarchical Pt/Y zeolites. Pt/Y-6h demonstrated the highest catalytic toluene oxidation activity of the prepared catalysts, with a T90 of 149 °C, reaction rate of 1.15 × 10−7 mol gcat−1 s−1, turnover frequency of 1.20 × 10−2 s−1, and an apparent activation energy of 66.5 kJ mol−1 at 60,000 mL g−1 h−1 at a toluene concentration of 1000 ppm. This study will facilitate the fine-tuning of hierarchically porous materials to improve material properties and achieve higher catalytic performance toward VOC oxidation.
Funder
Korea Institute of Industrial Technology
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献