Abstract
Organic solvent-tolerant (OST) enzymes have been discovered in psychrophiles. Cold-adapted OST enzymes exhibit increased conformational flexibility in polar organic solvents resulting from their intrinsically flexible structures. Proteus mirabilis lipase (PML), a cold-adapted OST lipase, was used to assess the contribution of salt bridges near the active site involving two arginine residues (R237 and R241) on the helix η1 and an aspartate residue (D248) on the connecting loop to the thermal and organic solvent stabilities of PML. Alanine substitutions for the ion pairs (R237A, R241A, D248A, and R237A/D248A) increased the conformational flexibility of PML mutants compared to that of the wild-type PML in an aqueous buffer. The PML mutants became more susceptible to denaturation after increasing the dimethyl sulfoxide or methanol concentration than after a temperature increase. Methanol was more detrimental to the structural stability of PML compared to dimethyl sulfoxide. These results suggest that direct interactions of dimethyl sulfoxide and methanol with the residues near the active site can have a destructive effect on the structure of PML compared with the global effect of heat on the protein structure. This study provides insight into the conformational changes within an OST enzyme with different effects on its thermal and organic solvent stabilities.
Funder
National Research Foundation of Korea
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献