Different Effects of Salt Bridges near the Active Site of Cold-Adapted Proteus mirabilis Lipase on Thermal and Organic Solvent Stabilities

Author:

Dachuri VinayKumarORCID,Jang Sei-HeonORCID,Lee ChangWooORCID

Abstract

Organic solvent-tolerant (OST) enzymes have been discovered in psychrophiles. Cold-adapted OST enzymes exhibit increased conformational flexibility in polar organic solvents resulting from their intrinsically flexible structures. Proteus mirabilis lipase (PML), a cold-adapted OST lipase, was used to assess the contribution of salt bridges near the active site involving two arginine residues (R237 and R241) on the helix η1 and an aspartate residue (D248) on the connecting loop to the thermal and organic solvent stabilities of PML. Alanine substitutions for the ion pairs (R237A, R241A, D248A, and R237A/D248A) increased the conformational flexibility of PML mutants compared to that of the wild-type PML in an aqueous buffer. The PML mutants became more susceptible to denaturation after increasing the dimethyl sulfoxide or methanol concentration than after a temperature increase. Methanol was more detrimental to the structural stability of PML compared to dimethyl sulfoxide. These results suggest that direct interactions of dimethyl sulfoxide and methanol with the residues near the active site can have a destructive effect on the structure of PML compared with the global effect of heat on the protein structure. This study provides insight into the conformational changes within an OST enzyme with different effects on its thermal and organic solvent stabilities.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3