Production of Propanediols through In Situ Glycerol Hydrogenolysis via Aqueous Phase Reforming: A Review

Author:

Md Radzi Mohamad Razlan,Manogaran M. Devendran,Yusoff Mohd Hizami Mohd,Zulqarnain ,Anuar Mohd Razealy,Shoparwe Noor FazlianiORCID,Rahman Mohd Fikri Ab

Abstract

Production of 1,2-propanediol and 1,3-propanediol are identified as methods to reduce glycerol oversupply. Hence, glycerol hydrogenolysis is identified as a thermochemical conversion substitute; however, it requires an expensive, high-pressure pure hydrogen supply. Studies have been performed on other potential thermochemical conversion processes whereby aqueous phase reforming has been identified as an excellent substitute for the conversion process due to its low temperature requirement and high H2 yields, factors which permit the process of in-situ glycerol hydrogenolysis which requires no external H2 supply. Hence, this manuscript emphasizes delving into the possibilities of this concept to produce 1,2-propanediol and 1,3-propanediol without “breaking the bank” with expenses. Various heterogenous catalysts of aqueous phase reforming (APR) and glycerol hydrogenolysis were identified, whereby the combination of a noble metal, support, and dopant with a good amount of Brønsted acid sites are identified as the key factors to ensure a high yield of 1,3-propanediol. However, for 1,2-propanediol, a Cu-based catalyst with decent basic support is observed to be the key for good yield and selectivity of product. The findings have shown that it is possible to produce high yields of both 1,2-propanediol and 1,3-propanediol via aqueous phase reforming, specifically 1,2-propanediol, for which some of the findings achieve better selectivity compared to direct glycerol hydrogenolysis to 1,2-propanediol. This is not the case for 1,3-propanediol, for which further studies need to be conducted to evaluate its feasibility.

Funder

YUTP

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3