The Effect of Calcination Temperature on Various Sources of ZrO2 Supported Ni Catalyst for Dry Reforming of Methane

Author:

Ibrahim Ahmed AididORCID,Fakeeha Anis HamzaORCID,Lanre Mahmud Sofiu,Al-Awadi Abdulrhman S.,Alreshaidan Salwa Bader,Albaqmaa Yousef AbdulrahmanORCID,Adil Syed FarooqORCID,Al-Zahrani Ateyah A.ORCID,Abasaeed Ahmed ElhagORCID,Al-Fatesh Ahmed S.ORCID

Abstract

Dry reforming of methane (DRM) over an Ni-based catalyst is an innovative research area due to the growing environmental awareness about mitigating global warming gases (CH4 and CO2) and creating a greener route of synthesis. Herein, 5% Ni supported on ZrO2 obtained from various sources was prepared by the impregnation method. The catalysts were calcined at 600, 700, and 800 °C. Furthermore, Ni-RC stabilized with MgO, SiO2, TiO2, and Y2O3 were tested. Characterization techniques employed comprise the N2 physisorption, infrared spectroscopy, Raman, thermogravimetric analysis, XRD, and TEM. The results of the present study indicated that the ZrO2 support source had a profound effect on the overall performance of the process. The best catalyst Ni-RC gave an average conversion of CH4 and CO2 of 61.5% and 63.6% and the least deactivation of 10.3%. The calcination pretreatment differently influenced the catalyst performance. When the average methane conversion was higher than 40%, increasing the calcination temperature decreased the activity. While for the low activity catalysts with an average methane conversion of less than 40% the impact of the calcination temperature did not constantly decrease with the temperature rise. The stabilization of Ni-RC denoted the preference Y2O3 stabilized catalyst with average values of CH4 and CO2 conversion of about 67% and 72%, respectively. The thorough study and fine correlation will be advantageous for technologically suitable Ni-15Y-RC catalysts for DRM.

Funder

Researchers Supporting Project number , King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3