Protonated Chiral 1,2-Diamine Organocatalysts for N-Selective Nitroso Aldol Reaction

Author:

Shim Jae HoORCID,Lee Ji Yeon,Kim Hyeon Soo,Ha Deok-Chan

Abstract

The introduction of nitrogen to carbonyl groups is considered both challenging and highly desirable by those who work in the field of organic synthesis. In this study, a diphenylethylenediamine-derived catalyst demonstrating N-selectivity was designed using a quantum calculation for the nitroso aldol reaction. The reductive monoalkylation of (R,R)-(+)-1,2-diphenylethylenediamine afforded an organic chiral diamine catalyst in high yield. The expected reaction mechanism for the nitroso aldol reaction was determined, and the product and solvent conditions were optimized through quantum calculations. The calculation results revealed that the enantioselectivity is determined by the hydrogen bond between the alkyl substituent of the chiral diamine and the oxygen of the aromatic aldehyde on the ammonium moiety. The reaction was found to proceed optimally in the presence of 5 mol % catalyst at −10 °C in brine. Using these conditions, an eco-friendly nitroso aldol reaction was performed in which the organic catalyst and cyclohexanone formed enamine. Nitrosobenzene, activated by hydrogen bonding with an ammonium catalyst, was used to minimize the steric hindrance between the catalyst and the reactant, resulting in high enantioselectivity. A nitroso aldol product with high N-selectivity and enantioselectivity (98% ee) was obtained in 95% yield. The catalyst developed in this study provides a less expensive and more environmentally friendly alternative for the nitroso aldol reaction.

Funder

the National Research Foundation (NRF) and funded by the Korean government

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3