Visible Light Induced Nano-Photocatalysis Trimetallic Cu0.5Zn0.5-Fe: Synthesis, Characterization and Application as Alcohols Oxidation Catalyst

Author:

Ghazzy Asma,Yousef Lina,Al-Hunaiti Afnan

Abstract

Here, we report a visible light-induced-trimetallic catalyst (Cu0.5Zn0.5Fe2O4) prepared through green synthesis using Tilia plant extract. These nanomaterials were characterized for structural and morphological studies using powder x-ray diffraction (P-XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The spinel crystalline material was ~34 nm. In benign reaction conditions, the prepared photocatalyst oxidized various benzylic alcohols with excellent yield and selectivity toward aldehyde with 99% and 98%; respectively. Aromatic and aliphatic alcohols (such as furfuryl alcohol and 1-octanol) were photo-catalytically oxidized using Cu0.5Zn0.5Fe2O4, LED light, H2O2 as oxidant, 2 h reaction time and ambient temperature. The advantages of the catalyst were found in terms of reduced catalyst loading, activating catalyst using visible light in mild conditions, high conversion of the starting material and the recyclability up to 5 times without loss of the selectivity. Thus, our study offers a potential pathway for the photocatalytic nanomaterial, which will contribute to the advancement of photocatalysis studies.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3