Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts

Author:

Pawelczyk EwelinaORCID,Wysocka IzabelaORCID,Gębicki JacekORCID

Abstract

Emissions of greenhouse gases and growing amounts of waste plastic are serious environmental threats that need urgent attention. The current methods dedicated to waste plastic recycling are still insufficient and it is necessary to search for new technologies for waste plastic management. The pyrolysis-catalytic dry reforming (PCDR) of waste plastic is a promising pro-environmental way employed for the reduction of both CO2 and waste plastic remains. PCDR allows for resource recovery, converting carbon dioxide and waste plastics into synthetic gas. The development and optimization of this technology for the high yield of high-quality synthesis gas generation requires the full understanding of the complex influence of the process parameters on efficiency and selectivity. In this regard, this review summarizes the recent findings in the field. The effect of process parameters as well as the type of catalyst and feedstock are reviewed and discussed.

Funder

Gdańsk University of Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference130 articles.

1. Plastics—The Facts 2021,2021

2. Recycling and recovery routes of plastic solid waste (PSW): A review

3. Production, use, and fate of all plastics ever made

4. A review on pyrolysis of plastic wastes

5. Official Journal of the European Union L 150: Legislation;Off. J. Eur. Union,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3