Author:
Yang Dingqing,Chen Jinyang,Hong Xiaomin,Cui Jingying,Li Lingzhen
Abstract
TiO2/hectorite composite photocatalysts with different molar ratios of lithium, magnesium, and silicon were synthesized by a one-pot hydrothermal method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherms, and ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS). When the molar ratio of lithium, magnesium, and silicon was 1.32:5.34:8 (TH-2), the composite showed the highest UV photocatalytic degradation of methylene blue (MB). The apparent rate constant of TH-2 was 0.04361 min−1, which was about 3.12 times that of EVONIK Degussa commercial TiO2 of AEROXIDE P25. The improvement of photocatalytic efficiency of the composite was mainly due to its high specific surface area, light trapping ability, and effective separation of electrons (e−) and holes (h+). At the same time, the F element of hectorite is beneficial to the formation of Ti3+ in TiO2, thus enhancing the photocatalytic activity. After five cycles, the removal rate of MB with TH-2 still reached 87.9%, indicating its excellent reusability.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献