Role of N-Doping and O-Groups in Unzipped N-Doped CNT Carbocatalyst for Peroxomonosulfate Activation: Quantitative Structure–Activity Relationship

Author:

Govindan KadarkaraiORCID,Kim Do-GunORCID,Ko Seok-Oh

Abstract

We examined the relationship between the intrinsic structure of a carbocatalyst and catalytic activity of peroxomonosulfate (PMS) activation for acetaminophen degradation. A series of nitrogen-doped carbon nanotubes with different degrees of oxidation was synthesized by the unzipping method. The linear regression analysis proposes that pyridinic N and graphitic N played a key role in the catalytic oxidation, rather than pyrrolic N and oxidized N. Pyridinic N reinforce the electron population in the graphitic framework and initiate the non-radical pathway via the formation of surface-bound radicals. Furthermore, graphitic N forms activated complexes (carbocatalyst-PMS*), facilitating the electron-transfer oxidative pathway. The correlation also affirms that -C=O was dominantly involved as a main active site, rather than -C-OH and -COOH. This study can be viewed as the first attempt to demonstrate the relationship between the fraction of N-groups and activity, and the quantity of O-groups and activity by active species (quenching studies) was established to reveal the role of N-groups and O-groups in the radical and non-radical pathways.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3