Abstract
Applications of visible-light photocatalytic engineered nanomaterials in the preparation of smart paints are of recent origin. The authors have revealed a great potential of these new paints for self-sterilizing of the surfaces in hospitals and public places simply with visible light exposure and this is reported for the first time in this review. A recent example of a communicable disease such as COVID-19 is considered. With all precautions and preventions taken as suggested by the World Health Organization (WHO), COVID-19 has remained present for a longer time compared to other diseases. It has affected millions of people worldwide and the significant challenge remains of preventing infections due to SARS-CoV-2. The present review is focused on revealing the cause of this widespread disease and suggests a roadmap to control the spread of disease. It is understood that the transmission of SARS-CoV-2 virus takes place through contact surfaces such as doorknobs, packaging and handrails, which may be responsible for many preventable and nosocomial infections. In addition, due to the potent transmissibility of SARS-CoV-2, its ability to survive for longer periods on common touch surfaces is also an important reason for the spread of COVID-19. The existing antimicrobial cleaning technologies used in hospitals are not suitable, viable or economical to keep public places free from such infections. Hence, in this review, an innovative approach of coating surfaces in public places with visible-light photocatalytic nanocomposite paints has been suggested as a roadmap to self-sterilizing against the spread of communicable diseases. The formulations of different nanoparticle engineered photocatalytic paints with their ability to destroy pathogens using visible light, alongwith the field trials are also summarized and reported in this review. The potential suggestions for controlling the spread of communicable diseases are also listed at the end of the review.
Subject
Physical and Theoretical Chemistry,Catalysis
Reference147 articles.
1. Progress and Prospects in Nanoscience Today;Pawar,2020
2. EVOLUTION OF NANOTECH ASSISTED PCR DIAGNOSIS OF MYCOBACTERIUM TUBERCULOSIS AND ITS ASSESSMENT WITH CONVENTIONAL METHODS
3. Detection of Mycobacterium tuberculosis from pulmonary sputum sample using SPION mediated DNA extraction method;Sawant;Res. J. Life Sci. Bioinform. Pharm. Chem. Sci.,2018
4. Studies on gold nanobiosensor for early diagnosis of Mycobacterium tuberculosis;Deepak;Int. J. Pharm. Biol. Sci.,2019
5. Marine paint fomulations: Conducting polymers as anticorrosive additives
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献