Thermal Conversion of Sugarcane Bagasse Coupled with Vapor Phase Hydrotreatment over Nickel-Based Catalysts: A Comprehensive Characterization of Upgraded Products

Author:

Santos Tarcísio MartinsORCID,Silva Wenes Ramos daORCID,Carregosa Jhonattas de Carvalho,Schmitt Caroline Carriel,Moreira Renata,Raffelt Klaus,Dahmen Nicolaus,Wisniewski AlbertoORCID

Abstract

In the present work, we compared the chemical profile of the organic compounds produced in non-catalytic pyrolysis of sugarcane bagasse at 500 °C with those obtained by the in-line catalytic upgrading of the vapor phase at 350 °C. The influence over the chemical profile was evaluated by testing two Ni-based catalysts employing an inert atmosphere (N2) and a reactive atmosphere (H2) under atmospheric pressure with yields of the liquid phase varying from 55 to 62%. Major changes in the chemical profile were evidenced in the process under the H2 atmosphere, wherein a higher degree of deoxygenation was identified due to the effect of synergistic action between the catalyst and H2. The organic fraction of the liquid phase, called bio-oil, showed an increase in the relative content of alcohols and phenolic compounds in the GC/MS fingerprint after the upgrading process, corroborating with the action of the catalytic process upon the compounds derived from sugar and carboxylic acids. Thus, the thermal conversion of sugarcane bagasse, in a process under an H2 atmosphere and the presence of Ni-based catalysts, promoted higher deoxygenation performance of the pyrolytic vapors, acting mainly through sugar dehydration reactions. Therefore, the adoption of this process can potentialize the use of this waste biomass to produce a bio-oil with higher content of phenolic species, which have a wide range of applications in the energy and industrial sectors.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3