Low Temperature Catalytic Oxidation of Ethanol Using Ozone over Manganese Oxide-Based Catalysts in Powdered and Monolithic Forms

Author:

Touati HoucineORCID,Valange Sabine,Reinholdt Marc,Batiot-Dupeyrat CatherineORCID,Clacens Jean-MarcORCID,Tatibouët Jean-Michel

Abstract

Catalytic oxidation of low concentrations of ethanol was investigated in dry and humid air streams at low temperature (60 °C) over manganese oxide-based catalysts supported on a meso–macrostructured TiO2 using ozone as the oxidant. Ethanol was selected as a representative model VOC present in indoor air, and its concentration was fixed to 10 ppm. For that purpose, a series of Mn/TiO2 powder and monolithic catalysts was prepared, some doped with 0.5 wt% Pd. Whatever the catalyst, the presence of water vapor in the gas phase had a beneficial effect on the conversion of ethanol and ozone. The Pd–Mn/TiO2 catalyst containing 0.5 wt% Pd and 5 wt% Mn exhibited superior oxidation efficiency to the Mn/TiO2 counterparts by increasing ozone decomposition (77%) while simultaneously increasing the selectivity to CO2 (85%). The selectivity to CO2 approached nearly 100% by increasing the amount of catalyst from 20 to 80 mg. In a further step, alumina wash-coated cordierite honeycomb monoliths were coated with the 0.5Pd–5Mn/TiO2 catalyst. Full conversion of ethanol to CO2 without residual O3 emitted (less than 10 ppb) could be attained, thereby demonstrating that the proposed Pd–Mn/TiO2 monolithic catalyst fulfills the specifications required for onboard systems.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3