Cobalt-Based Metal-Organic Framework Nanoparticles with Peroxidase-like Catalytic Activity for Sensitive Colorimetric Detection of Phosphate

Author:

Deng Zhichen,Zhang Huifeng,Yuan Ping,Su ZhengquanORCID,Bai Yan,Yin Zhina,He Jincan

Abstract

Appropriate addition of phosphate salt in food can improve the food quality and taste. However, extensive intake of phosphate salt may lead to some human diseases such as hyperphosphatemia and renal insufficiency. Thus, it is essential to establish a cost-effective, convenient, sensitive, and selective method for monitoring phosphate ion (Pi) to ensure food quality control. In this work, a Co-based metal-organic frameworks (Co-MOF) nanomaterial with dual functions (peroxidase-like activity and specific recognition) was designed for acting as a catalytic chromogenic platform for sensitive detection of Pi. The Co2+ nodes not only provide high enzyme-like activity to catalyze the 3,3′,5,5′--tetramethylbenzidine (TMB) substrate to blue oxTMB (652 nm) but also act as selective sites for Pi recognition. The use of cationic organic ligands (2-methylimidazole) and cationic metal ions (Co2+) endows the Co-MOF with a strong positive surface charge, which is beneficial to the capture of negative-charged Pi and the dramatically suppressed TMB oxidation. When Pi exists, it specifically adsorbs onto the Co-MOF through the Co-O-P bond and the strong electrostatic interaction, leading to the change of surface charge on Co-MOF. The peroxidase-like catalytic activity of Co-MOF is thus restrained, causing a different catalytic effect on TMB oxidation from that without Pi. Based on this principle, a colorimetric assay was established for rapid and sensitive detection of Pi. A good linear relationship was obtained between Pi concentration and the absorbance at 652 nm, with a linear range of 0.009–0.144 mg/L and a detection limit of 5.4 μg/L. The proposed assay was applied to the determination of Pi in actual food samples with recoveries of 92.2–108% and relative standard deviations (RSDs) of 2.7–7.3%, illustrating the promising practicality for actual samples analysis.

Funder

National Natural Science Foundation of China

Special Fund for "Climbing Plan" of Science and Technology Innovation Cultivation for Guangdong University Students in 2022 of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3