Abstract
The removal of refractory pollutants, i.e., methylene blue (MB) and ciprofloxacin (CIP), relies heavily on sorption technologies to address global demands for ongoing access to clean water. Because of the poor adsorbent–pollutant contact, traditional sorption procedures are inefficient. To accomplish this, a wheat husk biochar (WHB), loaded with cinnamic acid, was created using a simple intercalation approach to collect dangerous organic pollutants from an aqueous solution. Batch experiments, detecting technologies, and density functional theory (DFT) calculations were used to investigate the interactions at the wheat husk biochar modified with cinnamic acid (WHB/CA) and water interface to learn more about the removal mechanisms. With MB (96.52%) and CIP (94.03%), the functionalized WHB exhibited outstanding adsorption capabilities, with model fitting results revealing that the adsorption process was chemisorption and monolayer contact. Furthermore, DFT studies were performed to evaluate the interfacial interaction between MB and CIP with the WHB/CA surface. The orbital interaction diagram provided a visual representation of the interaction mechanism. These findings open up a new avenue for researchers to better understand adsorption behavior for the utilization of WHB on an industrial scale.
Funder
Higher Education Commission
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献