Copper and Iron Cooperation on Micro-Spherical Silica during Methanol Synthesis via CO2 Hydrogenation

Author:

Todaro Serena,Frusteri Francesco,Wawrzyńczak Dariusz,Majchrzak-Kucęba Izabela,Pérez-Robles Juan-Francisco,Cannilla CatiaORCID,Bonura GiuseppeORCID

Abstract

A series of mono- and bi-metallic copper and iron samples were prepared by impregnation method on micro-spherical silica and used for the synthesis of methanol via CO2 hydrogenation. Compared with conventional carrier oxides, micro-spherical silica has obvious advantages in terms of absorption capacity and optimal distribution of active phases on its surface, also exhibiting excellent heat resistance properties and chemical stability. The prepared catalysts were characterized by various techniques including XRF, XRD, SEM, TEM, H2-TPR and CO2-TPD techniques, while catalytic measurements in CO2 hydrogenation reaction to methanol were performed in a fixed bed reactor at a reaction pressure of 30 bar and temperature ranging from 200 to 260 °C. The obtained results revealed that the mutual interaction of copper–iron induces promotional effects on the formation of methanol, especially on systems where Fe enrichment on the silica support favours the presence of a larger concentration of oxygen vacancies, consequently responsible for higher CO2 adsorption and selective methanol production. Surface reconstruction phenomena rather than coke or metal sintering were responsible for the slight loss of activity recorded on the catalyst samples during the initial phase of reaction; however, with no appreciable change on the product selectivity.

Funder

Polish National Polish Agency for Academic Exchange

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3