Author:
Uppal Timsy,Reganti Sivani,Martin Ezekiel,Verma Subhash C.
Abstract
There is an immense healthcare challenge and financial pressure due to the COVID-19 pandemic caused by a newly identified human coronavirus, SARS-CoV-2. Effective COVID-19 prevention efforts in healthcare, home, and community settings highlight the need for rapid, efficient, and no-contact SARS-CoV-2 inactivation strategies. Here, we examined the photocatalytic and virucidal activity of the MACOMA™ TiO2 photocatalytic film activated by an UVA-LED-12V-367 nm (MA-717836-1) lamp against the HCoV-OC43, a member of the beta coronaviruses family, like SARS-CoV-2, using quantitative RT-qPCR and virus infectivity assays. The UVA radiation-responsive TiO2 film accelerated virus inactivation (decreased viral titer) compared to the uncoated glass surface when placed at a vertical distance of 1.2 feet (~14 inches) from virus samples for 10, 30, and 60 min. UVA-LED exposure for both 10 and 30 min effectively reduced the viral RNA copies and the infectious virus in samples on TiO2-coated surfaces compared to the control surfaces. Importantly, a 60 min exposure of samples on the TiO2 completely eliminated HCoV-OC43. These results confirmed that the MACOMA™ UVA/TiO2-based disinfection system provides a rapid and complete surface inactivation of tested human coronavirus in a human-safe manner and has great potential for limiting the virus spread in poorly ventilated as well as high-traffic public places.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献