Abstract
A series of Cex-Mn-Tiy catalysts were synthesized using the coprecipitation method, and sodium carbonate solution was used as a precipitant. The various catalysts were assessed by selective catalytic reduction of NOx with NH3, and characterized by X-ray diffraction, Raman spectroscopy, H2 temperature-programmed reduction, NH3 temperature-programmed desorption, and X-ray photoelectron spectroscopy to investigate the physicochemical properties, surface acidity, and redox abilities of the Cex-Mn-Tiy catalysts. The Ce0.1-Mn-Ti0.1 catalyst exhibited the best catalytic performance (more than 90% NOx conversion in the range of 75 to 225 °C), as a result of proper redox ability, abundant acid sites, high content of Mn4+ and Ce3+, and surface-adsorbed oxygen (OS). The results of in situ DRIFT spectroscopy showed that the NH3-SCR reaction followed both the E-R and L-H paths over the Ce0.1-Mn-Ti0.1 catalyst, and it occurred faster and more sharply when it mainly abided by the E-R mechanism.
Funder
National Natural Science Foundation of China
Shanghai Science and Technology Innovation Action Plan
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献