Mechanism Insight into Catalytic Performance of Ni12P5 over Ni2P toward the Catalytic Deoxygenation of Butyric Acid

Author:

Fu Shuai,Li Dan,Liu Tinghao,Liu Lijuan,Yang HuaqingORCID,Hu Changwei

Abstract

The Ni/P ratio of nickel phosphide has an important effect on the catalytic performance toward the deoxygenation of fatty acids to biofuel. The Ni12P5 cluster is preferred to model Ni12P5 catalyst with butyric acid as the reactant model of palmitic acid. The catalytic deoxygenation mechanism of butyric acid over Ni12P5 cluster has been theoretically investigated at GGA-PBE/DSPP, DNP level in dodecane solution. From butyric acid, the hydrodehydration is predominated to form n-butanal. Then, from n-butanal, low temperature benefits the hydroreduction to form butanol and then hydrodehydration to produce n-butane, whereas high temperature favors the direct decarbonylation to yield propane. n-Butane originates from n-butanol through hydrodehydration and not from n-butylene. Propane comes from n-butanal through decarbonylation and not from propanol and/or propylene. Additionally, CO stems from n-butanal through decarbonylation, whereas CO2 is ruled out from butyric acid through decarboxylation. Compared with Ni12P6 cluster, Ni12P5 cluster exhibits higher catalytic activity for the formation of butanal, n-butanol, and n-butane, while it displays lower catalytic activity toward the direct decarbonylation and dehydration to yield propylene. These results can be attributed to less negative charges of Ni-sites over Ni12P5 cluster, compared with Ni12P6 cluster.

Funder

National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3