Abstract
Layered double hydroxide (LDH) has emerged as a promising electrocatalyst; however, the synthetic method usually requires high temperature and high pressure, and sulfate-intercalated LDH is rarely reported. Herein, the sulfate-intercalated CoFe LDH nanosheets were successfully fabricated at ambient temperature via a facile strategy, using two-dimensional ZIF-9(III) as a template and FeSO4 as both etchant and iron source. When the as-prepared sulfate-intercalated CoFe LDH acts as an electrocatalyst, it presents superior electrocatalytic performance for the oxygen evolution reaction (OER), requiring low overpotential (η@10 mA cm−2 = 218 mV) with a small Tafel slope of 59.9 mV dec−1 in 1.0 M KOH, which compares favorably with commercial RuO2 and most reported transition-metal electrocatalysts. The high catalytic activity of CoFe LDH might be ascribed to the large interlayer space distance originating from special SO42− ions and the strong synergistic effects between Fe and Co. This work provides a novel and feasible approach to designing highly efficient electrocatalysts based on advanced LDH materials for OER.
Funder
National Natural Science Foundation of China
Guangxi Province Natural Science Foundation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献