Towards the Sustainable Production of Ultra-Low-Sulfur Fuels through Photocatalytic Oxidation

Author:

Belousov Artem S.ORCID,Shafiq IqrashORCID

Abstract

Nowadays, the sulfur-containing compounds are removed from motor fuels through the traditional hydrodesulfurization technology, which takes place under harsh reaction conditions (temperature of 350–450 °C and pressure of 30–60 atm) in the presence of catalysts based on alumina with impregnated cobalt and molybdenum. According to the principles of green chemistry, energy requirements should be recognized for their environmental and economic impacts and should be minimized, i.e., the chemical processes should be carried out at ambient temperature and atmospheric pressure. This approach could be implemented using photocatalysts that are sensitive to visible light. The creation of highly active photocatalytic systems for the deep purification of fuels from sulfur compounds becomes an important task of modern catalysis science. The present critical review reports recent progress over the last 5 years in heterogeneous photocatalytic desulfurization under visible light irradiation. Specific attention is paid to the methods for boosting the photocatalytic activity of materials, with a focus on the creation of heterojunctions as the most promising approach. This review also discusses the influence of operating parameters (nature of oxidant, molar ratio of oxidant/sulfur-containing compounds, photocatalyst loading, etc.) on the reaction efficiency. Some perspectives and future research directions on photocatalytic desulfurization are also provided.

Funder

The Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3