Abstract
Haloalkane dehalogenase (DhaA) catalyzes the hydrolysis of halogenated compounds through the cleavage of carbon halogen bonds. However, the low activity, poor environmental stability, and difficult recycling of free DhaA greatly increases the economic cost of practical application. Inspired by the organic–inorganic hybrid system, an iron-based hybrid nanocomposite biocatalyst FeHN@DhaA is successfully constructed to enhance its environmental tolerability. A series of characterization methods demonstrate that the synthesized enzyme–metal iron complexes exhibit granular nanostructures with good crystallinity. Under optimized conditions, the activity recovery and the effective encapsulation yield of FeHN@DhaA are 138.54% and 87.21%, respectively. Moreover, it not only exhibits excellent immobilized enzymatic properties but also reveals better tolerance to extreme acid, and is alkali compared with the free DhaA. In addition, the immobilized enzyme FeHN@DhaA can be easily recovered and has a satisfactory reusability, retaining 57.8% of relative activity after five reaction cycles. The results of this study might present an alternative immobilized DhaA-based clean biotechnology for the decontamination of organochlorine pollutants.
Funder
National Key Research & Developmental Program of China
Beijing Nova Program
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献