Catalytic Conversion of High Fructose Corn Syrup to Methyl Lactate with CoO@silicalite-1

Author:

Jiang Yuxi,Lyu Xilei,Chen Hao,Wei Xiwen,Zhang ZihaoORCID,Lu Xiuyang

Abstract

Methyl lactate (MLA), a versatile biomass platform, was typically produced from the catalytic conversion of high-priced fructose. High fructose corn syrup (HFCS) is a mixture of glucose, fructose, water, etc., which is viewed as an economical substitute for fructose to produce MLA due to the much lower cost of separation and drying processes. However, the transformation of HFCS to MLA is still a challenge due to its complex components and the presence of water. In this work, the catalytic conversion of HFCS to MLA over CoO@silicalite-1 catalyst synthesized via a straightforward post citric acid treatment approach was reported. The maximum MLA yield reached 43.8% at 180 °C for 18 h after optimizing the reaction conditions and Co loading. Interestingly, adding extra 3% water could further increase the MLA yield, implying that our CoO@silicalite-1 catalyst is also capable for upgrading wet HFCS. As a result, the costly drying process of wet HFCS can be avoided. Moreover, the activity of CoO@silicalite-1 catalyst can be regenerated for at least four cycles via facile calcination in air. This study, therefore, will provide a new opportunity to not only solve the HFCS-overproduction issues but also produce value-added MLA.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3