1,4-Butanediol Selective Dehydration to 3-Butene-1-ol over Ca–Zr–Sn Composite Oxide Catalysts

Author:

Dong Hao,Xu Cheng-Hua,Yang Fang-Lu,Du Lei,Liu Chen-Long,Chen Wen-Jing,Wang Lin

Abstract

Ca–Zr–Sn composite oxides catalysts for 1,4-butanediol (BDO) selective dehydration to 3-butene-1-ol (BTO) are synthesized by impregnation and co-precipitation in the present work. The results show that Ca–Zr–Sn catalysts prepared from co-precipitation by using NaOH-Na2CO3 mixing alkali solution as precipitant exhibit an excellent catalytic property for BDO dehydration to BTO. For instance, Ca–Zr–Sn oxide with Ca/Zr and Sn/Zr molar ratio of 0.68 and 0.28 calcined at 650 °C gives a BDO conversion and BTO selectivity of about 97% and 82%, respectively, and exhibits no deactivation during 1000 h scale-up experimental testing. X-ray diffraction results indicate that catalytic active centers for BDO dehydration to BTO are from Ca0.15Zr0.85O crystal phase. NH3- and CO2-temperature programmed desorption prove that the surface of obtained catalysts can provide a large amount of acid and base sites simultaneously. FT-IR spectra of pyridine-adsorbed samples show that acid sites on the surface of Ca–Zr–Sn oxide catalyst mainly exist in a state of Lewis acid, which activates terminal -OH groups of BDO molecule through complexing. The activated -OH interacts with β-H activated on base sites O2− anions relative to Ca species, thereby the CH2=CH- bonds are produced through dehydration to form BTO.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3