Abstract
The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.
Funder
King Faisal University, Saudi Arabia
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science