Abstract
Formic acid (FA) is one of the most prospective hydrogen carriers for renewable energy transformation. In this context, the addition of extra-amine is always required for promoting the reactivity of FA, which is still a key challenge. Herein, we report a simple but effective strategy to synthesize Pd nanoparticles, supported on NH2-functionalized, phosphorous-doped glucose-based porous carbon (NH2-P-GC). The introduction of NH2- groups on the support acts as an immobilized amine-additive for FA dehydrogenation, while phosphorus not only serves as an electronic promoter to keep Pd in the electronic deficient state for FA dehydrogenation, but also as an enlarger of the aperture size of the carbon. As a result, the Pd/NH2-P-GC has exceptional catalytic activity, 100% H2 selectivity, CO generation that is undetectable, and good reusability for hydrogen production from FA. In the additive-free dehydrogenation of aqueous FA solution, the initial turnover frequency (TOF) can reach 5126 h−1 at room temperature, which is substantially higher than the best heterogeneous catalyst so far recorded. Overall, the system’s high activity, selectivity, stability, and simplicity in producing CO-free H2/CO2 gas from FA, without the need for any additive, makes it attractive for practical deployment.
Funder
Natural Science Basic Research Program of Shaanxi
Scientific Research Plan Projects of Shaanxi Education Department
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献