Experimental Investigation and Modeling of the Sulfur Dioxide Abatement of Photocatalytic Mortar Containing Construction Wastes Pre-Treated by Nano TiO2

Author:

Chen Xue-FeiORCID,Jiao Chu-Jie

Abstract

A photocatalytic mortar containing recycled clay brick powder (RCBP), recycled fine aggregate (RFA), recycled glass (RG), and nanoscale titanium dioxide (NT) was fabricated to degrade low-concentration sulfur dioxide. Instead of intermixing or dip-coating, NT was firstly loaded onto the surface of carriers (RFA and RG) using a soaking method to prepare composite photocatalysts (CPs) denoted as NT@RFA and NT@RG. The prepared CPs can both take full advantage of the intrinsic characteristics of construction wastes, namely, the high porosity and alkalinity of RFA and the light-transmitting property of RG, and can significantly reduce the cost of using NT. RG in high dosage potentially triggers alkali–silica reaction (ASR) in cement-based materials, which affects the durability of the prepared mortar. RCBP, another typical construction waste sourced from crushed clay bricks, was proven to be a pozzolan similar to grade II fly ash. The combined use of RCBP and RG in photocatalytic mortar is expected to simultaneously improve durable performance and further raise the upper content limit of construction wastes. Results exhibit that 70% cement plus 30% RCBP as cementitious material can sufficiently control ASR to an acceptable level. The filling effect and the pozzolanic reaction caused by RCBP result in a decline in porosity and lessened alkalinity, which decreases sulfur dioxide removal. The paper uses both response surface methodology (RSM) and an artificial neural network (ANN) to model photocatalytic efficiency with various initial concentrations and flow rates and finds the ANN to have a better fitting and prediction performance.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3