Abstract
High priority in developing an efficient cobalt catalyst for ammonia synthesis involves optimizing its composition in terms of the content of promoters. In this work, a series of cobalt catalysts doubly promoted with cerium and barium was prepared and tested in ammonia synthesis (H2/N2 = 3, 6.3 MPa, 400 °C). Barium content was studied in the range of 0–2.6 mmol gCo−1. Detailed characterization studies by nitrogen physisorption, SEM-EDX, XRPD, H2-TPR, and H2-TPD showed the impact of barium loading in CoCeBa catalysts on the physicochemical properties and activity of the catalysts. The most pronounced effect was observed in the development of the active phase surface, a differentiation of weakly and strongly binding sites on the catalyst surface and changes in cobalt surface activity (TOF). Barium content in the range of 1.1–1.6 mmol gCo−1 leads to obtaining a catalyst with the most favorable properties. Its excellent catalytic performance is ascribed to the appropriate Ba/Ce molar ratio, i.e., greater than unity, which results in not only a structural promotion of barium, but also a modifying action associated with the in-situ formation of the BaCeO3 phase.
Funder
National Centre for Research and Development
Subject
Physical and Theoretical Chemistry,Catalysis
Reference42 articles.
1. The history of the development of ammonia synthesis;Tamaru:,1991
2. Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal
3. Structure and surface chemistry of industrial ammonia synthesis catalysts;Stoltz,1995
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献