On Optimal Barium Promoter Content in a Cobalt Catalyst for Ammonia Synthesis

Author:

Tarka Aleksandra,Zybert MagdalenaORCID,Ronduda HubertORCID,Patkowski WojciechORCID,Mierzwa Bogusław,Kępiński Leszek,Raróg-Pilecka Wioletta

Abstract

High priority in developing an efficient cobalt catalyst for ammonia synthesis involves optimizing its composition in terms of the content of promoters. In this work, a series of cobalt catalysts doubly promoted with cerium and barium was prepared and tested in ammonia synthesis (H2/N2 = 3, 6.3 MPa, 400 °C). Barium content was studied in the range of 0–2.6 mmol gCo−1. Detailed characterization studies by nitrogen physisorption, SEM-EDX, XRPD, H2-TPR, and H2-TPD showed the impact of barium loading in CoCeBa catalysts on the physicochemical properties and activity of the catalysts. The most pronounced effect was observed in the development of the active phase surface, a differentiation of weakly and strongly binding sites on the catalyst surface and changes in cobalt surface activity (TOF). Barium content in the range of 1.1–1.6 mmol gCo−1 leads to obtaining a catalyst with the most favorable properties. Its excellent catalytic performance is ascribed to the appropriate Ba/Ce molar ratio, i.e., greater than unity, which results in not only a structural promotion of barium, but also a modifying action associated with the in-situ formation of the BaCeO3 phase.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference42 articles.

1. The history of the development of ammonia synthesis;Tamaru:,1991

2. Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal

3. Structure and surface chemistry of industrial ammonia synthesis catalysts;Stoltz,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3